810 research outputs found

    Quantum plasmonic waveguides: Au nanowires

    Full text link
    Combining miniaturization and good operating speed is a compelling yet crucial task for our society. Plasmonic waveguides enable the possibility of carrying information at optical operating speed while maintaining the dimension of the device in the nanometer range. Here we present a theoretical study of plasmonic waveguides extending our investigation to structures so small that Quantum Size Effects (QSE) become non negligible, namely quantum plasmonic waveguides. Specifically, we demonstrate and evaluate a blue-shift in Surface Plasmon (SP) resonance energy for an ultra-thin gold nanowire

    Magneto-optical characterization of MnxGe1-x alloys obtained by ion implantation

    Full text link
    Magneto-optical Kerr effect hysteresis loops at various wavelengths in the visible/near-infrared range have been used to characterize the magnetic properties of alloys obtained by implanting Mn ions at fixed energy in a Ge matrix. The details of the hysteresis loops reveal the presence of multiple magnetic contributions. They may be attributed to the inhomogeneous distribution of the magnetic atoms and, in particular, to the known coexistence of diluted Mn in the Ge matrix and metallic Mn-rich nanoparticles embedded in it [Phys. Rev. B 73, 195207(2006)].Comment: 2 pages, 2 figures. Proceeding of the International Conference on Magnetism. Kyoto, August 20-25 200

    Differences in Perceived and Experienced Stigma Between Problematic Gamblers and Non-gamblers in a General Population Survey

    Get PDF
    We consider a sample of about 700 people, interviewed on the streets, who are sorted into two groups by a self-report, screening questionnaire: namely, non-problematic gamblers/non-gamblers and problematic gamblers. Within each group, we compare both social (perceived) stigma and self-perceived (experienced) stigma, measured by means of other two self-report questionnaires, and we seek for relations between stigma and socio-demographic variables that can help targeting possible interventions to reduce gambling-related stigma. We, then, compare stigma between the two groups of non-(problematic) gamblers and problematic ones, and we also check the hypothesis that higher social stigma is related to higher self-perceived stigma, as well as higher stigma is related to lesser help-seeking. The latter hypothesis is of utmost importance, given that stigma is recognised to be one of the major causes for hindering help-seeking by problematic gamblers. The research is carried out in Italy, one of the first countries in the world for the money spent per capita in gambling activity every year

    Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si

    Get PDF
    8 págs.; 7 figs.The luminescence quenching of Er in crystalline Si at temperatures between 77 and 300 K is investigated. Samples were prepared by solid-phase epitaxy of Er-implanted amorphous Si layers with or without O codoping. After epitaxial regrowth at 620°C, thermal annealing at 900°C for 30 sec was performed in order to eliminate residual defects in the regrown layer and electrically and optically activate the Er ions. Measurements of photoluminescence intensity and time decay were performed as a function of temperature and pump power. By increasing the temperature from 77 K to room temperature the luminescence intensity decreases by ~ three orders of magnitude in the Er-doped sample without O codoping, but only by a factor of 30 in the O-doped sample. In this sample room-temperature photo-luminescence and electroluminescence have been observed. Time-decay curves show a fast initial decay (~100 ¿sec) followed by a slow decay (~1 msec), with the relative intensity of these two components depending on temperature, pump power, and O codoping. The decay curves can be fitted by a sum of two exponential functions revealing the existence, in both samples, of two different classes of optically active Er sites. The concentration of excitable sites belonging to the slow-decaying class is similar for the samples with or without O codoping and rapidly decreases when temperature is increased. At temperatures above 150 K the Er luminescence is dominated by the fast-decaying centers the concentration of which is greatly increased by the presence of O. It is found that in the absence of oxygen room-temperature luminescence is hampered by the limited amount of excitable Er ions. In contrast, in O-doped samples the nonradiative decay of excited Er is the main quenching mechanism. The main factors determining the temperature quenching of Er luminescence and the crucial role of oxygen are discussed. © 1994 The American Physical Society.This work has been partially supported by GNSM-CNR. Work at the FOM Institute is part of the research program of the foundation for Fundamental Research on Matter (FOM), and was made possible by financial support from the Dutch organization for the Advancement of Research (NWO}, the Foundation for Technical Research (STW}, and the IC Technology Program (IOP Electro-optics) of the Ministry of Economic Affairs.Peer Reviewe

    Hydrogen induced optically-active defects in silicon photonic nanocavities

    Get PDF
    This work was supported by Era-NET NanoSci LECSIN project coordinated by F. Priolo, by the Italian Ministry of University and Research, FIRB contract No. RBAP06L4S5 and by the EPSRC UKSp project. Partial financial support by the Norwegian Research Council is also acknowledged.We demonstrate intense room temperature photoluminescence (PL) from optically active hydrogen- related defects incorporated into crystalline silicon. Hydrogen was incorporated into the device layer of a silicon on insulator (SOI) wafer by two methods: hydrogen plasma treatment and ion implantation. The room temperature PL spectra show two broad PL bands centered at 1300 and 1500 nm wavelengths: the first one relates to implanted defects while the other band mainly relates to the plasma treatment. Structural characterization reveals the presence of nanometric platelets and bubbles and we attribute different features of the emission spectrum to the presence of these different kind of defects. The emission is further enhanced by introducing defects into photonic crystal (PhC) nanocavities. Transmission electron microscopy analyses revealed that the isotropicity of plasma treatment causes the formation of a higher defects density around the whole cavity compared to the ion implantation technique, while ion implantation creates a lower density of defects embedded in the Si layer, resulting in a higher PL enhancement. These results further increase the understanding of the nature of optically active hydrogen defects and their relation with the observed photoluminescence, which will ultimately lead to the development of intense and tunable crystalline silicon light sources at room temperature.Publisher PDFPeer reviewe

    A model for the onset of transport in systems with distributed thresholds for conduction

    Full text link
    We present a model supported by simulation to explain the effect of temperature on the conduction threshold in disordered systems. Arrays with randomly distributed local thresholds for conduction occur in systems ranging from superconductors to metal nanocrystal arrays. Thermal fluctuations provide the energy to overcome some of the local thresholds, effectively erasing them as far as the global conduction threshold for the array is concerned. We augment this thermal energy reasoning with percolation theory to predict the temperature at which the global threshold reaches zero. We also study the effect of capacitive nearest-neighbor interactions on the effective charging energy. Finally, we present results from Monte Carlo simulations that find the lowest-cost path across an array as a function of temperature. The main result of the paper is the linear decrease of conduction threshold with increasing temperature: Vt(T)=Vt(0)(14.8kBTP(0)/pc)V_t(T) = V_t(0) (1 - 4.8 k_BT P(0)/ p_c) , where 1/P(0)1/P(0) is an effective charging energy that depends on the particle radius and interparticle distance, and pcp_c is the percolation threshold of the underlying lattice. The predictions of this theory compare well to experiments in one- and two-dimensional systems.Comment: 14 pages, 10 figures, submitted to PR

    Hydrolysis of caprine and ovine milk proteins, brought about by aspartic peptidases from Silybum marianum flowers

    Get PDF
    The flowers of cardoon (Asteraceae) are a rich source of aspartic peptidases which possess milk clotting activity – and are thus used in traditional cheesemaking in the Iberian Peninsula. This study was aimed at characterizing the enzymatic action of the aspartic peptidases present in flowers of Silybum marianum (L.) Gaertn. (Asteraceae), specifically upon degradation of caseins. The proteolytic activities toward Na-caseinates previously prepared from caprine and ovine milks were studied, in a comparative fashion, using urea-PAGE, tricine-SDS-PAGE, densitometry, electroblotting and sequencing. Caprine as1- and b-caseins were degraded up to 68% and 40%, respectively, during 24 h of incubation. Only one important and well-defined band corresponding to a molecular weight of 14.4 kDa – i.e. a fragment of b-casein, was observed by 12 h of hydrolysis. By 24 h of incubation, ovine as- and b-caseins were degraded up to 76% and 19%, respectively. In what concerns specificity, the major cleavage site in ovine caseinate was Leu99-Arg100 in as1-casei

    Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires

    Get PDF
    We measure, by photonic torque microscopy, the nonconservative rotational motion arising from the transverse components of the radiation pressure on optically trapped, ultrathin silicon nanowires. Unlike spherical particles, we find that nonconservative effects have a significant influence on the nanowire dynamics in the trap. We show that the extreme shape of the trapped nanowires yields a transverse component of the radiation pressure that results in an orbital rotation of the nanowire about the trap axis. We study the resulting motion as a function of optical power and nanowire length, discussing its size-scaling behavior. These shape-dependent nonconservative effects have implications for optical force calibration and optomechanics with levitated nonspherical particles
    corecore